CONNECTIVITY FOR BUSINESS AVIATION

CABLE ASSEMBLY SOLUTIONS FOR GOGO AVANCE SYSTEMS

PIC Wire & Cable developed a series of cable assemblies approved for use with Gogo® Business Aviation's AVANCETM L3, L5 and L5i data connectivity systems and is listed in system manuals. Assemblies are customizable and designed to meet an application's unique loss, length, weight and flexibility requirements. Pre-engineered assembly drawings are available to simplify the US Federal Aviation Administration (FAA) submission process for modifications and installations.

Proper cable assembly is critical to optimizing the full benefits of interconnect technology. PIC Wire & Cable's internal assembly facility provides certified, tested and phase matched assembly sets to simplify the system installation process.

AVANCE CABLE OPTIONS

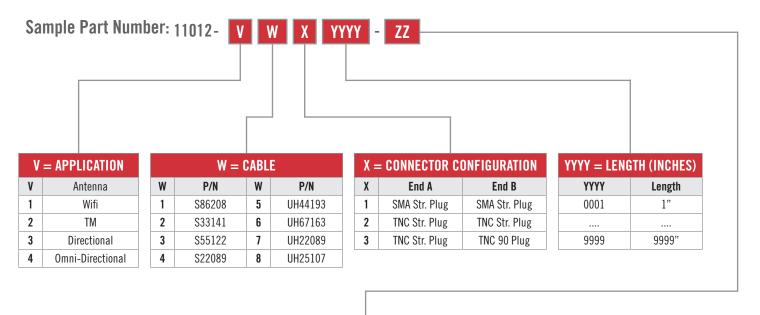
PIC Wire & Cable offers a variety of PICMates RF and RF ULTRALITE® cable solutions that meet or exceed AVANCE system performance requirements. These high quality cables were specially designed as low loss options, with the ULTRALITE line optimized for applications that require lightweight, flexible cables.

MAXIMUM CABLE LENGTH (INCHES) BY APPLICATION											
Cable P/N	Weight lbs/100 ft (kg/100 m)	Bend Radius in (mm)	WIFI (5.0 GHz)		TM (1.8 GHz)		Direc (0.9	Omni-Directional (0.9 GHz) *L3 Only			
			Optimal Loss (3 dB)	Max Loss (5 dB)	Optimal Loss (3 dB)	Max Loss (5 dB)	Optimal Loss (1 dB)	Max Loss (3 dB)	Max Loss (3.48 dB)		
\$86208	2.0 (2.9)	0.65 (16.51)	84	156	156	264	4 60 2		264		
\$33141	6.5 (9.7)	1.40 (35.56)	174	312	300	540	132	444	516		
\$55122	8.3 (12.4)	1.55 (39.37)	55 (39.37) 216		396	708	174	588	696		
\$22089	18.0 (26.8)	2.50 (63.50)	N/A	N/A	N/A	N/A	258 852		1008		
UH44193	1.9 (2.9)	0.80 (20.32)	108	198	198	348	84	288	348		
UH67163	3.4 (5.1)	1.20 (30.48)	180	336	336	600	144	480	588		
UH22089	7.2 (10.7)	1.70 (43.18)	324	600	600	1068	252	852	1020		
UH25107	12.0 (17.9)	2.50 (63.50)	N/A	N/A	N/A	N/A	312	1080	1284		

AVANCE CONNECTOR OPTIONS

PIC Wire & Cable also has several matching SMA and TNC connectors for its RF and RF ULTRALITE cables to meet unique application requirements.

Cable P/N	SMA Str. Plug	TNC Str. Plug	TNC 90 Plug
S86208	190814	190808	190809
S33141	190314	190308	190309
\$55122	190614	190608	190609
S22089	N/A	190408	190409
UH44193	150114	150108	150109
UH67163	150514	150508	150509
UH22089	150414	150408	150409
UH25107	N/A	190408	190409


CONNECTIVITY FOR BUSINESS AVIATION

ASSEMBLY PART NUMBER BUILDER

Accelerate the cable assembly procurement process by building a part number with design details that meet an application's specific requirements. Ready to use engineering drawings are provided to streamline the FAA submission process for part modifications and installations.

Engineering drawings for cable assemblies are available for download at www.picwire.com/assemblies/assembly-worksheets.

ZZ = SUB SYSTEM DESIGNATOR														
ZZ	SUB SYSTEM	AVANCE	ZZ	SUB SYSTEM	AVANCE	ZZ	SUB SYSTEM	AVANCE	ZZ	SUB SYSTEM	AVANCE	ZZ	SUB SYSTEM	AVANCE
01	TM 1	L3 & L5	05	WIFI 3	L3 & L5	09	ATG1 FWD V1	L3	13	ATG1 FWD H1	L5	17	ATG2 FWD V1	L5
02	TM 2	L3 & L5	06	WIFI 4	L3 & L5	10	ATG1 FWD H1	L3	14	ATG1 RIGHT H2	L5	18	ATG2 RIGHT V2	L5
03	WIFI 1	L3 & L5	07	WIFI 5	L3 & L5	11	ATG1 AFT V2	L3	15	ATG1 AFT H3	L5	19	ATG2 AFT V3	L5
04	WIFI 2	L3 & L5	08	WIFI 6	L3 & L5	12	ATG1 AFT H2	L3	16	ATG1 LEFT H4	L5	20	ATG2 LEFT V4	L5

R040123